- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Caleb Koch (1)
-
Guy Blanc (1)
-
Lange, Jane (1)
-
Strassle, Carmen Tan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the certification problem, the algorithm is given a function f with certificate complexity k and an input x^â, and the goal is to find a certificate of size ⤠poly(k) for fâs value at x^â. This problem is in NP^NP, and assuming đŻ â NP, is not in đŻ. Prior works, dating back to Valiant in 1984, have therefore sought to design efficient algorithms by imposing assumptions on f such as monotonicity. Our first result is a BPP^NP algorithm for the general problem. The key ingredient is a new notion of the balanced influence of variables, a natural variant of influence that corrects for the bias of the function. Balanced influences can be accurately estimated via uniform generation, and classic BPP^NP algorithms are known for the latter task. We then consider certification with stricter instance-wise guarantees: for each x^â, find a certificate whose size scales with that of the smallest certificate for x^â. In sharp contrast with our first result, we show that this problem is NP^NP-hard even to approximate. We obtain an optimal inapproximability ratio, adding to a small handful of problems in the higher levels of the polynomial hierarchy for which optimal inapproximability is known. Our proof involves the novel use of bit-fixing dispersers for gap amplification.more » « less
An official website of the United States government

Full Text Available